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Abstract--Stochastic self-oscillator is one of the most intriguing features in nonlinear dynamics, and 
usually can be observed at the accumulation point of successive period doubling bifurcations. In regard to lhis 
problem, lhe substance deals with the stability and bifurcation aspects of oscillatory motions, fine structure of 
trajectories, typical properties shown in the ftows and maps. and the mathematical rigor in measuring the 
stochastieity concerned with applications to science and engineering problems. 

INTRODUCTION 

The problems arising in many contexts of engi- 
neerings and natural sciences are frequently inter- 
preted in the form of mathematical equations through 
modelling techniques. A dynamical system, which 
may be thought of as any set of equations giving the 
time evolution of the state of a system from a know- 
ledge of its previous history, can have the form of a 
function (though this term is frequenlly replaced by 
the word mapping in dynamics), a set of first order or- 
dinary differential equations or of partial differential 
equations. Such a system, depending oc the mathe- 
,natical aspects of its structure, can exhibit a variety of 
dynamic behavior from stable fixed points to a hie- 
rarchy of stable limit cycles or apparently stochastic 
oscillations. 

Stochastic oscillations or chaos, involve an attrac- 
tive random set (more usually called the strange attrac- 
tor) within which all the paths in the phase space of 
the dynamical system are unstable and behave in a 
complicated and tortuous fashion. These stochaslic 
oscillations are intimately related withthe problem of 
turbulence, which arose almost a hundred years ago 
and has remained to this day one of the most attractive 
and intriguing problem in classical physk:s and is still 
far away from its final solution. The problem of tur- 
bulence, which originally appeared in hydrodynamics, 
is in fact common to many branches of science such as 
plasma physics, cosmology, ecology, weather for- 
casting, the theory of planets and stars, cheafical kine- 
tics, radiophysics and so on. 

Early in 1940s, Landau[l] suggested that the onset 
of turbulence in fluid flow may be vi.wed as sequen- 
tial instabilities o1 'he state. An analogous idea was put 

forward ir~dependently by Hopf[2] in a somewhat dif- 
ferent form. The Landau-Hopf model suggested that as 
the Reynold number increases the turbulence appears 
as a result of a chain of successive bifurcations that 
leads to a quasiperiodic motion. The first bifurcation in 
this chain is such that the initially stable state of 
equilibrium is transformed into an unstable state and, 
at the same time, a stable limit cycle appears in its 
neighborhood. The resulting periodic motion then 
loses its stability, and a two dimensional formation ap- 
pears in the neighborhood of the stable cycle that has 
vanished, namely, a toms whose winding frequency is 
unrelated to the main frequency. This doubly periodic 
motion then becomes unstable and a three dimen- 
sional torus is created, and so on. The result of such se- 
quential bifurcations is that the motion becomes very 
complicated and tortuous. 

During the 1960s, Lorenz[3] and Ruelle and 
Takens[ 4 ] independently and from different points of 
view, suggested the relevance of strange attractors to 
the onset of turbulence. Lorenz wanted to explain the 
dynamics of a model system of three coupled, first 
order, nonlinear evolution of the Benard instabiiity. By 
a careful analysis of the numerical solutions, he 
discovered an exotic solution whie_h wandered in a 
region of the phase space of the system with very com- 
plicated geometrical structure. Ruelle and Takens too 
offered a possible mechanism to a turbulent solution. 
They discussed, on ,Jle basis of general arguments, the 
strange attractor that could appear via transition from a 
doubly periodic motion on a two dimensional toroida[ 
surface. 

Of chemically reacting systems the most thoroug- 
hly studied oscillating system is the Belousov-Zha- 
botinskii reaction[5-12] which involves the cerium- 
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catalyzed bromination and oxidation of malonic acid 
by a sulfuric acid solution of bromate. The earlier 
model of B-Z system involved reactions among eleven 
chemical species and some of the proposed systems 
[11,12] are of questionable chemical relevance even 
though they display a variety of mathematically in- 
teresting behavior. Recent models of complex dyna- 
mics are the three-dimensional systems of consecutive 
reactions A ~ B ~ C  in a continuous flow stirred tank 
reactor[13,14], which display sequential bifurcations 
of period doubling and chaotic motions. 

Besides the literature above mentioned, there has 
been much published in this field. The problems 
under discussion involve the fluid flows[15,16], solid 
state physics[17], buckling beams[18,19], quantum 
mechanics[20,21], plasmas[22,23] and magneto- 
hydrodynamic f[ows[24,25]. It is not possible to give a 
detailed presentation of all of these and for n~ore infor- 
mation, the references should be consulted. 

NONLINEAR DYNAMICS 

1. Nonlinear Systems and Maps 
In looking into the nature of stochastic nonlinear 

dynamics, we first review some aspects of the initial 
value problem 

d x / d t = f ( x ) ,  x ( O ) ~ x ~  (1_) 

where x is a state vector in n-dimensional real space R, 
as may be expressed by x~R n. Then, the flow r 
R'~--.R '~ is defined by r = x(t,xo) and is read as the 
map 4' t from R" into itself. The equilibria of the system 
are referred to as the zeroes of f or the fixed points of 
(1). Suppose that we have fixed point .~ so that f(R) = O. 
Then, to characterize the behavior of the solution near 
~, we usually use the linearization technique and know 
that there exist, in the linearized system, stable and 
unstable eigenspaces E ~, E ~ of dimension n = n~ + n.. 
Also, in the nonlinear system, there exist stable and 
unstable manifolds of Y~, W~(R) and WU(,~) which are 
smooth and tangent to E ~ and E" at R. These, manifolds 

W~(~), W"(R) are invariant in the sense that a trajectory 
initially in this manifold stays within it. They are com- 
posed of unions of solution curves and provide non- 
linear analogues of the flat stable and unstable eigen- 
spaces E ~, E u of the linearized system. 

For the fixed value of time t=  T, the nonlinear 
system and its flow give rise to a nonlinear map 

x,,+, F !x,, > (2) 

where F = r is a nonlinear vector valued function. It 
must be noted that, whi le  the orbit  or tra}ectory r (p) of 
a f low is a curve in R '~, the orbi t  { F'~(p) } of a map is a se- 

E" 

�9 F(q) 

Q . ~  �9 F4tq) 

�9 F2"~(q) F3(q) 

Fig. i. Invariant manifolds, eigenvectors and maps for 
a flow. 

quence of points. This distinction is shown in Figure l, 
where F2(p) means F[F(p)] and, similaryly, Fn(p)means 
the nth iteration of the map of p. 

The stability of the fixed point is also determined 
by the eigenvalues of the linearized map of F. Let DF 
(~) be the n x n Jacobian matrix of first partial deriva- 
tives of the function F at ~. If ~ is a fixed point of 
F[F(x)=,~] and DF(~) has no eigenvalues of unit 
modulus, Y~ is called hyperbolic. If all the eigenvalues 
have moduli <1, Yr is stable and called a sink or attrac- 
tor. If any of the eigenvalues has modulus>l  and 
others have moduli< 1, .~ is an unstable saddle. If all 
the eigenvalues have modul i>l ,  R is a source. The 
numbers of eigenvalues of which modu}i are less than 
or greater than 1 represent respectively the dimen- 
sions of stable and unstable manifolds of 2. However, 
one must bear in mind that the linearized map or 
system can only characterize the local structure of a 
system. 
2. Closed Orbits and Poincar~ Maps 

The dynamical features may appear quite different- 
ly depending on the structure of invariant manifolds of 
the steady states. Here, by a "steady state", we mean 
one that remains time invariant on the average, and 
can thus be stationary or periodic depending on whe- 
ther it is represented by a point or closed orbit. Quali- 
tative changes in the dynamic features occur ,,,/hen a 
parameter crosses a critical boundary of domains in 
parametric space This qualitative structural change in 
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(a) 

(b) 
Fig. 2. Some of limit sets for flows. (a) homoelinic or- 

bits, Co) Heteroclinic orbits. 

steady state is called "bifurcation". Since the complex 
dynamical features are closely related to the cyclic 
time evolution of a system, we may refer to some bifur- 
cation theorems concerning closed orbits. 

The Hopf bifurcation (from stationary to periodic) 
occurs when a spiral sink loses its stability with con- 
tinuously changing parameters[26], The Hopf transi- 
tion can be obtained by seeing when the Jacobian ma- 
trix of the linearized system has a pair of complex 
eigenvaiues crossing the imaginary axis. The dyna- 
mical behavior, however, is characterized by an inva- 
riant manifold tangent in the center eigenspace, called 
the center manifold[26,27]. In this bifurcation, a limit 
cycle surrounding an equilibrium point typically emer- 
ges from the equil;brium. 

Another bifurcation type is associated with a homo- 
clinic orbit for which the unstable manifold of a hyper- 
bolic saddle point returns to itself transversely with in- 
finite period (Fig. 2).When a parameter crosses a boun- 
dary through such a point there exists a family of peri- 
odic orbits[28,29]. In two-dimensional systems a 
homoclinic bifurcation can only involve simple limit 
cyc[es. However, when the system is three-dimen- 
siona/ or higher, the stable and unstable manifolds 
may appear tortuously tangled each other .and thus the 
dynamic feature becomes very complicated. Silikov 
[30,31] suggested the cases when the chaotic motions 
can be found around the homoclinic orbits in three or 
higher dimensional systems (Fig. 3). More complex 
dynamics of a hyperbo[ic saddle point is found in 
Lorenz equation[3,32] for which the unstable manifold 
lies in its stable manifold and we consequently have 
two symmetric homoclinic orbits circulating over the 
branches as shown in Figure 4. Thus the appearance 
of a homoclinic orbit in systems o[ high dimensions re- 
quires our attentio~ ~, in finding chaotic motions. How- 
ever that does not imply the general existence of 

"WU(x--) t 

Fig. 3. Homoclinic orbit with two-dimensional stable 
manifold spiraling to the saddle point. 

~:haos since the global properties of the flow play a 
fundamental role in the dynamics. 

The dynamical structures of periodic or oscillatory 
motions are frequently discussed in terms of Poincare 
map (or first return map), which is important in under- 
standing the geometrical view of phase flows. We first 
take a local cross section S in n-dimensional real space 
R '+ transverse to a flow ~, and consider point x in S. 
Then the Poincar~ map is defined as the intersection 
of ~ x )  with S(Figure 5). Furthermore, if we let xo be a 
point on a periodic orbit with period T, then there ex- 
ists a unique real valued function t=r(x)  such that 
r eS with T:=r(xo), and x is in a small neighbor- 
hood of x o in S. 

This theorem can be used to locate a closed orbit 
by regarding r as a continuously differentiable func- 
tion in the neighborhood of xo[33,34 ]. The stability of 
closed orbits is also determined by the characteristic or 
Floquet multipliers, which are the eiger]values of the 
Jacobian matrix of the Poincare map in the periodic 

I .f._._~\ \f 
'\ I Ws(p) 

Fig. 4. Lorenz attractor with double loops of horaoclinic 
orbits. 
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/ 

Fig. 5. Polncare maps. 

orbit. One must note that one of the multipliers is 
always on the unit circle at + 1. 
3. Bi furcat ion  A s p e c t s  o f  Per iod ic  S o l u t i o n s  

Chaotic motion is a type of time evolution of a 
dynamical system with seemingly stochastic character 
of self-oscillation, on which all the paths are unstable 
and behave in a complicated and tortuous fashion. In. 
many cases this change proceeds by succession of 
period doublings of the periodic motion to some limit, 
beyond which the attractor changes character and 
becomes chaotic. Further change in the parameter can 
lead to an inverse process, sudden disappearance of 
periodic motion or the appearance of periodic state,. 
with K oscillations per period for all natural numbers 
K. Each of these K-cycles may undergo its own period 
doubling sequences. This type of universal sequence 
occurs typically beyond the accumulation noint of the 
2n-sequence[35,36]. 

The period doubling or flip bifurcat:~on occurs 
when any of the Floquet multipliers leaves the unit cir- 
cle through -1. Then the periodic solution becomes 

Fig. 6. Period doubled limit cycle on the Mobius band. 

unstable and the unstable manifold forms a Mobius 
band such as can be obtained from an open strip by 
twisting half turn and connecting both ends. The tra- 
jectories on the surface of the band tend to the boun- 
daries and form a stable cycle with the period almost 
twice the original periodic orbit (Fig. 6). 

This period doubling bifurcation usually occurs 
repeatedly and it is notable that substantial evidence 
was developed empirically and theoretically for a kind 
of universal constant which says that the period doubl- 
ing bifurcations occur on a shrinking scale in para- 
meter,u such that the ratio 

a.= (#~ -,~,~_, ) / (,~.., -~) (3) 

approaches to a constant value of 4.669201 ... as n goes 
to infinity. It is called Feigenbaum series[37,38] and 
known to be independent of tl~e nature of the system 
and holds for most nonlinear transformations. 

This sequence of period doubling bifurcations can 
be observed in one-dimensional noninvertible map as 
was used by Feigenbaum. We may consider the func- 
tion F(x,0 in Equation (2) as 

F (x,,) = ux~ (1-  x~), 0 ~_x~<l (4) 

where a is a parameter. This may be considered as a 
sequence of Poincar~ maps of an intergrated ordinary 
differential equation, dx /d t=  f(x). The fixed point is 
defined as the solution of 

= F (i) (51 

and the stability of the fixed point .~ is determined by 
the Jacobian matrix of the map at .~, F 'U:) as we have 
discussed in previous section. Therefore, the stability 
region in parameter space should satisfy the condition 
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Fig. 7. One-dimensional iteration map F(x.). 
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IF '  (~) I<1  (6) 

Thus if [F'(x~ I>1,  the maps F of points near ~ suc- 
cessively move farther away from it, and ~: is unstable. 

Now we consider a to increase from zero. When a 
is less than 1, we have only one fixed point at x = Q, 
and the zero is stable. When a increases beyond 1, the 
zero point becomes unstable and another stable fixed 
point appears at .~= 1-1/a(Fig. 7). The slope F'(x-) 
decreases from 1 as a increases, and then crosses-1 at 
a = 3.0. In this case two branches of points appear 
recursively every second iteration. This .can be e• 
pressed with period two maps, 

x , . ~ - F '  (x,~) (7) 

Figure 8 illustrates the period one and two maps at 
a=3.1 with two fixed points (~=0.5580, 0.0746). 
The stability of the fixed points is then determined by 
the condition, 

IF ~' (~) I <1 (8) 

"Iwo branches of period two points are stable until 
a = 3.44948 and then, as can be deduced, two bran- 
ches of period four points appear for each of period 
two branches. Figure 9 shows the four fixed points 
(~= 0.3828, 0.8269, 0.5009, 0.8750) at a =  3.5 for 
period one and period four maps. 

In this way sequential bifurcation of period doubl- 
ings propagates until a=  3.57 with a'~:: 4.6692 as 
Feigenbau,l has derived. After the chaotic regime, 
odd period points begi ~ to appear at u= 3.6786 and at 
a= 3.8284 there appears a period three point, at 
which point there can be points of any period[39]. 
These odd number of periodic points undergo their 
own period doubling bifurcations. More precise ex- 1oo[ / j  

n = 2  n = l  

i/' , / o.5o,// 
0.25 / ' / / /  

/ 

0.00 ' 

0.00 0.25 0.50 0.75 1.00 

X 
Fig. 8. Stable period two cycle and F 2 map for a : 3.1. 
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Fig. 9. Stable period four cycle  and F 4 map for a : 3.5. 

planation may be referred to the literatures[40,41]. 

STRANGE ATrRACTORS 

1. T y p i c a l  P r o p e r t i e s  
When the chaotic motion is discussed, the question 

may arise as to how this strange behavior can appear 
and what the nature of that motion is. The answer, 
though it may have some distance from comple~.e solu- 
tion, lies in the instability of the solutions for the 
system. For better understanding of the stochastic 
nature, physical and topological insight may be em- 
phasized rather than mathematical rigor. We are now 
going to discuss some characteristic features of com- 
plex dynamics. 

Referring to the phase portrait of the chaotic too- 
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Fig. 10. Phase flow of a strange attractor on a plane. 
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tion on a strange attractor as shown in Figure 10136], 
one can visualize the flow in the form of layers of two 
dimensional sheets and the layer stretches along its 
width and folds over on itself. This property is called 
the hyperbolicity of strange attractor and is related to 
other typical properties of chaotic motion such as 
Smale horseshoe, Cantor property and the divergency 
of trajectories. The appearance of these .features in a 
dynamical system allows us to assume that the com- 
plex modulation regimes correspond to a strange attra- 
ctor in the phase space. 

The horseshoe is such that a rectangle in the inter- 
secting plane is mapped into a curved figure reminis- 
cent of a horseshoe. When we consider a Poincar~ 
map from the square segment S, F:S---~R 2, the Jacobian 
of F can be thought of as performing vertical expan- 
sion and horizontal contraction of S by the factors of 
the eigenvalues of DF (Fig. 11). The reiteration of map- 
ping leads the images on S into finer and finer scales of 
a leaflike pattern. The formation of the typical leaf 
structure is characterized mathematically as a Cantor 
set. The leaved structure across the layer can be clearly 
seen in an example due to H~non[42], who considered 
the case of a two-dimensional quadratic mapping, 

xn, ,  - - y n -  axn 4-1 

y.~, -- bx,~ (9) 

D C 

A B 

F 

E F ~I 

A B C D 

/ /  

It 
E F I  

Fig. 11. 

-U U 
K L G H  

F 3  

The iterated maps of a square which remini- 

sces the horseshoes. 

This invertible mapping may be thought of as the Poin- 
car~ section of a three dimensional flow system. When 
a=  1.4 and b = 0.3, the map shows the finer structure 
of leaves (Fig. 12) and the area contracts by the factor 
Idet DFI for each intersection. 

The divergency property in complex attractors is 
that the nearby trajectories diverge farther and farther 
away from each other with successive maps, implying 
that all the trajectories on the attractor are unstable. 
The divergency, in a statistical sense, may he thought 
of as an invariant measure describing quantitative pro- 
perties of dynamical systems. In dealing with this pro- 
blem we will examine why the measure relies on the 
mathematical rigor and how the numerical computa- 
tions describe the real system behavior. 

2. I n v a r i a n t  M e a s u r e  
To fully understand the concepts of invariant mea- 

sure, one may need the background for the ergodicity 
[43], which gives us probabilistic information to 
describe quantitative properties of dynamical systems. 
If we let F: R'~-->R '~ be a discrete dynamical system and 
let g: Rn~R be a real valued function, the time average 
of g on the trajectory of x is defined as 

N - I  

~(x)~-~im ( l /N) X g t F  ~rx ) :1(), 
i o 

and is invariant for all initial x. The ergodicity of dyna- 
mical systems is defined if 

~• = f g  (• P (• 11 

where P(x) is the probability or invariant distribution. 
For a system corresponding to an n-periodic mo- 

tion, P(x) appears discrete, consisting of n #-functions 
at the n stable fixed points of the map. When the mo- 
tion is chaotic, P(x) appears nonzero over a finite range 
of x even though it may be discontinuous. The probabi- 
lity distribution P(x) can be constructed numerically 
from the equation 

P ,ix) ~ P % ) / IdV/d•  I~, & P ~x~,/IdV/dx I,~ , 12 

where x I and x 2 are the points of inverse mapping for 
x. Figure 13144] shows the iterated maps and P(x) for 
one dimensional map of Equation(4) with a=  3.825, 
displaying the chaotic behavior for a finite range of x. 
In a similar sense, we may consider the topological en- 
tropy which is stochastic indicator of a dynamical 
system. Let us define e > 0 and an integer n>0,  and let 
M(e,n) be the maximum number of different paths 
separated by a distance greater than e, i.e., for two dif- 
ferent paths x~, and x2, there exists 0 < i < n  such that 
d[Fi(Xl), Fi(x2)]> e Then, the topological entropy of the 
dynamic system is given gy 

h ( F ) = l i m  lira In M ( s , n ) / n  113) 
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Fig. 12. H~non attractor. 

From this definition, it immediately follows, in particu- 
lar, that if a flow path is stable in the sense of Liapu- 
nov, the entropy is zero and M(~,n) does not increase 
with increasing n. If h is greater than zero for the 
system, it is natural to refer to the dynamic behavior as 
stochastic. We my note here that the topologic en- 
tropy is an invariant measure of stochaslicity, which 
means two dynamical systems having the same metric 
entropy are related by an isomorphism that preserw~s 
measure. 

When we replace g(x) of Equation(l 1) with lndF /  
dxi we obtain the largest Liapunov exponent whic.h 
allows one to define a quantitative parameter like an 
entropy. The Liapunov characteristic exponents 

0.21 
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0.15 ~'' - ' ~ L _ _  

0.55 0.60 0.65 0.70 

(b) 105 iterations 

0 . 1 8 9 5 - -  
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0.1893 

0.1892 

0.1891 

0.1890 

0.1889 
0.6305 

. . f * , ,  * ,  
. , . .  t . .  

' %  . " ~  . ~  . 

. . . .  I 

0.6310 0.6315 

(d) 5 x 106 iterations 

0.6320 

measure the average asymptotic divergence rate of 
nearby trajectories in different directions of a systenfs 
phase space and will be discussed further in some 
detail. 

3. L iapunov  E x p o n e n t s  
Let us define the m-dimensional system as before 

cLx/dt = f (x/, x (0} = xo r 

Consider a trajectory in m-dimensional phase, space 
and a nearby trajectory with initial condition Xo and 
yo = Xo+AX,, respectively. These evolve with time r 
yielding the tangent vectorAx(Xo, r) with its Euclidean 
norm d(x~.t)= [I J x ( x j ) l l ,  
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Fig. 13. One-dimensional map and invariant distribu- 

tion P(x) for'a = 3.825. 

f 
r 

Bx=  if(y) - f(x)]  dt -} ~ 115) 

Writing for convenience u =Ax, the time evolution for 
u can be expressed approximately by linearizing (15) 
along the trajectory x(xo, t) with the assumption that u 
is small 

du/& J[x(t)~ u (16) 

where J =3f/Ox is the Jacobian matrix of f. Then the 
mean exponential divergence rate of initially close tra- 
jectories is 

cr :%,Uo)- l im 1/t  l n [ d ( ~ , t ) / d ( ~ , O ) ]  (17) 

Furthermore, there is an m-dimensional basislfi~} of u 
such that for any u, c~ takes on one of m values cr, 

(Xo) = ~(xo,6i),which are the Liapunov characteristic 
exponents and can be ordered by size. 

When the Equation (16) and (17) are used, the 
Liapunov exponents can b% obtained. However, in 
chaotic motion, the norm u increases exponentially 
with increasing time, and this leads to the problem of 
overflow and other computation errors. To circumvent 
this problem, one can use the renormalization of u to 
the unity after every finite time [46,47], and obtain the 
mean value of a,~ as 

n 

e . = l / b ~ r )  Z' In ui ( r l  (18) 
i 1 

Liapunov exponents are also defined for maps as 
well as flows. Let us consider the m-dimensional map 

xn-1 = F (x.) 119) 

and let us introduce the eigenvalues ,< (n) of the matrix 

A,~=[J (x , )  �9 J ( x , , , ) " . J % ) ~  ~'~ 120) 

where J is the Jacobian matrix of the map, OF/Ox. 
Then the Liapunov exponents are given by 

o-, = lira In l ,~, (rap l, i = i ,  2, --., m (21) 

Therefore, the Liapunov exponents for a flow can be 
obtained on the Poincard section weighted by the 
mean time of successive iterations. 

Since the chaotic nature of dynamics is revealed by 
the divergence of the nearby trajectories, the largest 
Liapunov exponent always shows positive values like 
the topo]ogic entropy. While for a periodic orbit, the 
largest exponent will obviously die away when the tra- 
jectory returns to the same point at every period. 
When the largest exponent converges to a negative 
value, we refer to it as the case of non-periodic attrac- 
tor. 

In computing the Liapunov exponents for flows, 
however, there exist problems concerning the fractal 
nature of chaotic attractor, which prohibits smooth 
mapping from the flows and brings about noise in cal- 
culation. Referring to the dimensions of an attractor 
which is also a clear measure to characterize its pro- 
perty, a strange attractor typically bears the dimension 
slightly greater than 1145]. For this reason, even 
though one-dimensional map is constructed from a 
flow, the Liapunov exponents are very sensitiw~ to the 
noise [48], and thus may rely upon the method of 
numerical computation. 

C O N C L U S I O N  

We have briefly described the stochastic motions of 
nonlinear oscillatory systems. From this article one ob- 
viously cannot be expected to obtain a full understan- 
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ding of this rapidly growing field ot stochastic systems 
and their applications in a number of areas in science 
and engineering. However the authours hope to have 
made some of the fundamental concepts of complex 
dynamics and the ways of application to the engineer- 
ing problems. 

This subject has received most attention from phy- 
sical scientists and mathematicians. But now the exis- 
tence of strange attractors in the phase space of non- 
linear systems has turned out to be almosl as common 
as the existence of limit cycles. Furthermore, it has 
been known that this exotic motion happens because 
of the instability and the tangling of paths within the 
attractor. This implies that perturbation of state 
however small will never produce the same trajectory 
(divergence), and yet the qualitative features are main- 
rained (structural stability). However it is still not easy 
to locate the stochastic motions exactly even with the 
clue of Feigenbaum sequence. 

Turbulence in fluid flows represents tlhe stochastic 
regimes of self-oscillations in partial differential 
systems. The full solution of this problem has not yet 
been obtained, and the Lorenz system derived from 
two partical differential equations[3] does not describe 
the problem exactly even though it has made a remark- 
able contribution to the study of this field. For chemi- 
cally reacting systems, oscillatory motio~-~s are to be 
found in distributed systems[49-51]. However, it is not 
clear that they undergo sequential period doubling bi- 
furcations and culminates in stochastic motions at the 
accumulation point. These remain as problems yet to 
be solved for research in this area is still just beginn- 
ing. 
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